Sökresultat

Filtyp

Din sökning på "*" gav 549921 sökträffar

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg LÖSNINGAR Linjär algebra, FMAA55 2024-05-31 1. a) Ekvationerna för linjerna på parameterform är ℓ1 : (x, y, z) = (3t, t, 4t) och ℓ2 : (x, y, z) = (2− 4t, 5+ 3t, 7− t) respektive. Skärningen bestäms av ekvationssystemet3t = 2− 4s t = 5 + 3s 4t = 7− s ⇐⇒ 3t +4s = 2 t −3s = 5 4t + s = 7 ←− ←− ⇐⇒  t −3s = 5 3t +4s = 2 4t + s = 7 ←− −3 ←−−−− −4 ⇐⇒

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linjaer_Algebra_FMAA55_2024_05_31.pdf - 2025-11-16

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg LÖSNINGAR Linjär algebra, FMAA55 2024-08-27 1. a) Skärningen bestäms av ekvationssystemet 1 + t = 1 + 2s 2− t = 5 + s −3− 2t = −1− 2s ⇐⇒  t −2s = 0 −t −s = 3 −2t +2s = 2 ←− 1 ←−−− 2 ⇐⇒  t −2s = 0 −3s = 3 −2s = 2 ←− − 2 3 ⇐⇒  t −2s = 0 −3s = 3 0 = 0 Vi har alltså s = 3 −3 = −1 och t = 2s = 2 · (−1) = −2. Insättning av t = −2 i ℓ1:s ekvation

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linjaer_Algebra_FMAA55_2024_08_27.pdf - 2025-11-16

No title

Lunds Tekniska Högskola Matematik Helsingborg Lösningar Linjär algebra, FMAA55 2025-04-24 1. a) Linjen ℓ1 har riktningsvektor v = (2 − 1, 3 − 1, 4 − 1) = (1, 2, 3) som ger ekvationen ℓ1 : (x, y, z) = (1 + t, 1 + 2t, 1 + 3t). Linjen ℓ2 har ekvationen ℓ2 : (x, y, z) = (−4 + 3t, 5 − t, 2 + t). Skärningen bestäms därför av ekvationssystemet1 + t = −4 + 3s 1 + 2t = 5− s 1 + 3t = 2 + s ⇐⇒  t −3s =

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linjaer_Algebra_FMAA55_2025_04_24.pdf - 2025-11-16

No title

Lunds Tekniska Högskola Matematik Helsingborg Lösningar Linjär algebra, FMAA55 2025-08-22 1. a) Med A : (1, 0, 1) och B : (1, 1, 2) har planet π1 riktningsvektorerna v1 = (−2, 1, 0) och v2 = −→ AB = (1− 1, 1− 0, 2− 1) = (0, 1, 1). En normalvektor för π1 är då n = v1 × v2 = (−2, 1, 0)× (0, 1, 1) = (∣∣∣∣1 0 1 1 ∣∣∣∣ ,− ∣∣∣∣−2 0 0 1 ∣∣∣∣ , ∣∣∣∣−2 1 0 1 ∣∣∣∣) = (1, 2,−2). En ekvation för π1 på affin f

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linjaer_Algebra_FMAA55_2025_08_22.pdf - 2025-11-16

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg TENTAMENSSKRIVNING LINJÄR ALGEBRA, FMAA55 2025-08-22 kl 8.00–13.00 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar och svaren förenklas maximalt. Alla baser och koordinatsystem får antas vara ortonormerade och positivt orienterade, om inte annat anges. 1. a) Planet π1 är parallellt med vektorn (−2, 1, 0) och går genom punkt

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Tentor/Tentamen___Linjyr_Algebra_FMAA55_2025_08_22.pdf - 2025-11-16

No title

Matematisk statistik Tentamen: 2024–08–30 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik Lösningsförslag 1. Notering: Denna uppgift liknar Vännman uppgift 2.29, där definitionen av oberoende skall användas. Vi betecknar utfallet med a prickar p̊a första tärningen och b p̊a den andra som (a, b). Vi f̊ar d̊a Ω =  (1, 1), (1, 2), (1, 3), (1,

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_241029_lsg.pdf - 2025-11-16

No title

Matematisk statistik Tentamen: 2023–10–27 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Hjälpmedel: Miniräknare och utdelad formelsamling • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maximalt • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper • P̊a omslaget m̊aste du skriva med bläck • Skriv endast p̊a en

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_231027.pdf - 2025-11-16

No title

Matematisk statistik Tentamen: 2024–04–03 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Hjälpmedel: Miniräknare och utdelad formelsamling • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maximalt • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper • P̊a omslaget m̊aste du skriva med bläck • Skriv endast p̊a en

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_240403.pdf - 2025-11-16

No title

Matematisk statistik Tentamen: 2024–08–30 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Till̊atna hjälpmedel: Miniräknare samt utdelad formelsamling (häftad med tentamen). • Tentamen best̊ar av 6 uppgifter om 1.0 poäng vardera, med delpoäng om minst 0.1 poäng. • Betygsgränser: Betyg 3 (godkänt): 3.0 poäng. Betyg 4: 4.0 poäng. Betyg 5: 5.0 poäng. •

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_240830.pdf - 2025-11-16

No title

Matematisk statistik Tentamen: 2025–04–22 kl 0800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Till̊atna hjälpmedel: Miniräknare samt utdelad formelsamling (häftad med tentamen). • Tentamen best̊ar av 6 uppgifter om 1.0 poäng vardera, med delpoäng om minst 0.1 poäng. • Betygsgränser: Betyg 3 (godkänt): 3.0 poäng. Betyg 4: 4.0 poäng. Betyg 5: 5.0 poäng.

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_250422.pdf - 2025-11-16

No title

Matematisk statistik Tentamen: 2025–08–22 kl 0800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Till̊atna hjälpmedel: Miniräknare samt utdelad formelsamling (häftad med tentamen). • Tentamen best̊ar av 6 uppgifter om 1.0 poäng vardera, med delpoäng om minst 0.1 poäng. • Betygsgränser: Betyg 3 (godkänt): 3.0 poäng. Betyg 4: 4.0 poäng. Betyg 5: 5.0 poäng.

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_250822.pdf - 2025-11-16

No title

Matematisk statistik Tentamen: 2025–10–27 kl 1400–1900 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Till̊atna hjälpmedel: Miniräknare samt utdelad formelsamling (häftad med tentamen). • Tentamen best̊ar av 6 uppgifter om 1.0 poäng vardera, med delpoäng om minst 0.1 poäng. • Betygsgränser: Betyg 3 (godkänt): 3.0 poäng. Betyg 4: 4.0 poäng. Betyg 5: 5.0 poäng.

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_251027.pdf - 2025-11-16

No title

FORMELSAMLING FÖR HELSINGBORGSKURSERNA I MATEMATISK STATISTIK Del 1 - Sannolikhetsteori Sannolikhet och händelser • Additionssatsen: P(A ∪ B) = P(A) + P(B) − P(A ∩ B) • Betingad sannolikhet: P(A |B) = P(A∩B) P(B) • A och B är oberoende ⇐⇒ P(A ∩ B) = P(A) P(B). • Bayes sats: P(A |B) = P(B | A)P(A) P(B) • Satsen om total sannolikhet: P(A) = n∑ i=1 P(A |Hi) P(Hi) om Hi ∩ Hj = ∅ då i ̸= j och ⋃n i

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/formelsamling_matstat_hbg_v6.pdf - 2025-11-16

No title

Matematisk statistik Lösningar: 2024–08–30 kl 0800–1300 Matematikcentrum FMSF40 Lunds universitet Sannolikhetsteori och diskret matematik 1. Givet att ξ ∈ N(m, 0.1) vill vi bestäma µ s̊a att P (ξ ≥ 5) = 0.99 P ( ξ −m 0.1 ≥ 5−m 0.1 ) = 0.99 Vi söker allts̊a ett värde s̊a att en N(0,1) fördelning är större än värdet i 99% av fallen. Detta svarar mot −λ0.01 = −2.3263, vilket ger 5−m 0.1 = −λ

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Loesningar/fmsf40_2024_08_30_lsn.pdf - 2025-11-16

No title

Matematisk statistik Tentamen: 2024–11–01 kl 0800–1300 Matematikcentrum FMSF40 Lunds universitet Sannolikhetsteori och diskret matematik Lösningsförslag 1. Kretskort: Definiera händelserna T: tillverkad p̊a Taiwan, K: tillverkad i Kalifornien samt D: defekt enhet. Vi har d̊a ur uppgiften P (D | T ) = 0.001 och P (D | K) = 0.03 samt att T ∪K = Ω eller att K = T c. (a) Vi f̊ar att P (K) = 0.2 och

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Loesningar/fmsf40_tenta_241101_lsg.pdf - 2025-11-16

No title

Matematisk statistik Tentamen: 2025–08–22 kl 0800–1300 Matematikcentrum FMSF40 Lunds universitet Sannolikhetsteori och diskret matematik Lösningsförslag 1. Vi f̊ar händelserna (a) A ∪B, (b) (A ∩Bc) ∪ (Ac ∩B) samt (c) A | B. Dessa kan illustreras i Venndiagram som: (0.6) Ω A B A ∪ B Ω A B (A ∩ Bc) ∪ (Ac ∩ B) A A ∣ B Ω = B 2. För sporterna fotboll (F) och basket (B) har vi följande antal: |F |

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Loesningar/fmsf40_tenta_250822_lsg.pdf - 2025-11-16

LUNDS TEKNISKA HÖGSKOLA

LUNDS TEKNISKA HÖGSKOLA Matematik LTH Tentamenskrivning FMSF 40 Helsingborg Sannolikhetsteori och diskret matematik 2025-10-27 kl.14.00-19.00 __________________________________________________________________________  Hjälpmedel: miniräknare och utdelat formelblad.  Lösningarna ska vara försedda med ordentliga motiveringar och svar förenklas maximalt.  Skriv anonymkod (eller namn om du saknar k

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Tentor/Tenta__FMSF40_251027.pdf - 2025-11-16

No title

Matematik LTH Helsingborg Tentamensskrivning, FMSF40 Sannolikhetsteori och diskret matematik 2024-04-03 kl 8.00–13.00 • Hjälpmedel: Miniräknare och utdelad formelsamling. • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maxi- malt. • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper. • P̊a omslaget m̊aste du skriva med bläck. • Skriv endast p̊a ena

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Tentor/Tentamen___Sannolikhetsteori_och_diskret_matematik___FMSF40_2024_04_03.pdf - 2025-11-16

No title

Matematisk statistik Tentamen: 2024–08–30 kl 0800–1300 Matematikcentrum FMSF40 Lunds universitet Sannolikhetsteori och diskret matematik • Hjälpmedel: Miniräknare och utdelad formelsamling • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maximalt • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper • P̊a omslaget m̊aste du skriva med bläck • Skriv en

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Tentor/fmsf40_2024_08_30.pdf - 2025-11-16

2025-10-03-MatematikInfo

2025-10-03-MatematikInfo Study Physics in Lund MARTIN MAGNUSSON FYSISKA INSTITUTIONEN LUNDS UNIVERSITET Overview of the education structure 2 years Master Bachelor 3 years Job Job BSc programs •Physics •Theoretical physics •Astrophysics / Astronomy 5 year degree programs • Engineering physics / nano • Medical physics • Teacher physics + math Bachelor education – 180 hp ➢ All mandatory courses shou

https://www.maths.lu.se/fileadmin/maths/Matematik_NF/InfoVt26/2025-10-03-MatematikInfo.pdf - 2025-11-16