Sökresultat

Filtyp

Din sökning på "*" gav 534454 sökträffar

People

  Principal Investigator: Alex Evilevitch, PhDProfessor of Cell Biology Email: Alex [dot] Evilevitch [at] med [dot] lu [dot] se   Lab photos  PUB night with the group, August 2023   Postdocs   José Ramón Villanueva Valencia, PhDEmail: jose_ramon [dot] villanueva-valencia [at] med [dot] lu [dot] se (jose_ramon[dot]villanueva-valencia[at]med[dot]lu[dot]se)    Santosh Gawali, PhD Email: santosh [dot]

https://www.virus-biophysics.lu.se/people - 2025-07-27

Open positions

Alex Evilevitch Research Group We are always interested in reviewing applications from MSc students, prospective PhD students and postdocs.Project description  Herpesviruses are a leading cause of human viral disease. Herpesviruses consist of a double-stranded DNA genome contained within a protein shell, termed the capsid, that is surrounded by an unstructured protein layer and a lipid-envelope. H

https://www.virus-biophysics.lu.se/open-positions - 2025-07-27

News

January 9, 2024 , Physics World "Viruses change structure at the temperature of the human body to better infect us". https://physicsworld.com/a/viruses-change-structure-at-the-temperature-of-the-human-body-to-better-infect-us/  November 8, 2023,  Lund University press release on our pioneering study published in PNAS showing how temperature triggers release of viral genome by changing the form and

https://www.virus-biophysics.lu.se/news-0 - 2025-07-27

Publications

To see Prof. Alex Evilevitch Open Researcher and Contributor ID (ORCID), click the link below (it opens another website):https://orcid.org/0000-0002-0245-9574   Below, there is the full list of publication of Prof. Alex Evilevitch. It links to another webpage related to the publisher.Villanueva Valencia J. R.,  Li D.,  Casjens S. R.,  Evilevitch A., "‘SAXS-osmometer’ method provides measurement of

https://www.virus-biophysics.lu.se/publications - 2025-07-27

Atomic Force Microscopy

We use atomic force microscopy (AFM) nano-indentation method to measure DNA mobility in the capsid. The mobility of DNA packaged inside the HSV-1 capsid is measured by recording the force resisting the capsid indentation when the AFM tip is brought into contact with the DNA-filled capsid in solution. Force resisting the AFM tip indentation of the capsid is recorded as the force-distance curve. Cap

https://www.virus-biophysics.lu.se/methods-and-techniques/atomic-force-microscopy - 2025-07-27

Cryo-Electron Microscopy

We use cryo electron microscopy (cryo-EM) and image reconstruction to examine the virion structure at subnanometer resolution. We also analyze structure and density of viral DNA packaged in a capsid.  Figure: Cutaway views from cryo-EM reconstructions of (A) HSV-1 C-capsid and (B) phage lambda procapsid and mature DNA-filled lambda capsid. HSV-1 and lambda phage capsids are shown to scale. Owing t

https://www.virus-biophysics.lu.se/methods-and-techniques/cryo-electron-microscopy - 2025-07-27

Microcalorimetry

The isothermal titration calorimetry (ITC) provides the most direct method to measure the internal energy of the confined viral genome. In order to experimentally dissect the thermodynamic determinants of viral DNA packaging and ejection energetics, we were first to use ITC to directly measure the heat released by DNA ejection from a virus capsid. This approach allows one to address experimentally

https://www.virus-biophysics.lu.se/methods-and-techniques/microcalorimetry - 2025-07-27

Super Resolution and Single Particle Fluorescence Microscopy

Super-Resolution Structured Illumination Microscopy (SR-SIM) provides resolutions down to 120 nm, allowing visualization of individual herpesvirus capsids (HSV-1) attached to the nucleus (HSV-1 C-capsid diameter is 125 nm).  Figure: Imaging of reconstituted capsid-nuclei system confirms specific capsid binding to the NPCs at the nuclear membrane. Representative super-resolution SIM image showing G

https://www.virus-biophysics.lu.se/methods-and-techniques/super-resolution-and-single-particle-fluorescence-microscopy - 2025-07-27

Small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) of viral genomes

Despite the structure of packaged viral DNA being central for ejection and consequentially infectivity of the virus, the detailed understanding of the packing structure of DNA inside the viral capsid. SAXS and SANS allow investigation of the structure of DNA filled capsids in solution in a wide range of environmental conditions. SAXS and SANS are powerful techniques that provides detailed structur

https://www.virus-biophysics.lu.se/methods-and-techniques/small-angle-x-ray-scattering-saxs-and-small-angle-neutron-scattering-sans-viral-genomes - 2025-07-27

Covers & Highlights

For many double stranded (ds) DNA viruses the viral genome is actively packaged into the virus capsid by a powerful molecular motor. This results in an energetically unfavorable state of the packaged genome, creating tens of atmospheres internal pressure inside the virion. Using a new calorimetric assay to determine the activation energy barriers associated with genome loss in response to elevated

https://www.virus-biophysics.lu.se/covers-highlights - 2025-07-27

Döden på Vipeholm – ett forskningsprojekt

Följ det Vetenskapsrådsfinansierade forskningsprojektet ”Döden på Vipeholm – en undersökning om vården av ’osnygga obildbara sinnesslöa’ och möjlig medveten dödssvält”. Om projektet Under några av 1940-talets första år dog 200 av de patienter som bodde på Vipeholms sjukhus. Vad berodde det på, att så många dog under de här åren? Kan det ha handlat om eutanasi – vilket har framförts men aldrig lett

https://www.vipeholm.lu.se/vipeholm - 2025-07-27

Publicerat

Artikel av Kristina Engwall i Nordic Journal of Educational History”… äro absolut obildbara”: Barnen på Vipeholm 1935–1963DOI: https://doi.org/10.36368/njedh.v11i1.456Abstract: Hospital in Sweden was the only institution for the ’uneducated, difficult to care for feebleminded’. Although it was designed for adults, a fifth of those admitted were under the age of 15. The article focuses on the child

https://www.vipeholm.lu.se/om-projektet/publicerat - 2025-07-27

Vem var Hugo Fröderberg – och vad var Vipeholms sjukhus?

Elin Bommenel skriver om sjukhuschefen och överläkaren Hugo Fröderberg Under sitt långa yrkesliv fick Hugo Fröderberg (1897–1986) följa utvecklingen av vad som då kallades ”sinnesslövården”. För eftervärlden kom han att bli känd som sjukhuschef och överläkare på Vipeholms sjukhus – Europas största i sitt slag med plats för nästan 1000 ”svårskötta, obildbara sinnesslöa”. Hugo Fröderberg föddes i Bä

https://www.vipeholm.lu.se/vem-var-hugo-froderberg-och-vad-var-vipeholms-sjukhus - 2025-07-27

Om projektet

Ett tvärvetenskapligt forskningsprojekt om Vipeholm Under krigsåren 1941–1943 dog ett ovanligt stort antal intagna på Vipeholm. Varför vet vi inte med säkerhet ännu. Genom tvärvetenskaplig arkivforskning arbetar fyra forskare med att ta reda på vad som egentligen hände. Hur tar ett välfärdssamhälle hand om sina marginaliserade, mest sårbara invånare? Och hur har synen förändrats på de människor so

https://www.vipeholm.lu.se/om-projektet - 2025-07-27

Medverkande

De deltar i forskningsprojektet ”Döden på Vipeholm” En historiker, en funktionshinderforskare, en idéhistoriker och en medicine doktor specialiserad i psykiatri. Läs mer om deltagarna i det tvärvetenskapliga forskningsprojektet. Foto: Octar Guloglu Elin Bommenel är lektor i Service management och tjänstevetenskap vid Lunds universitet. Där undervisar hon om health management samt om vetenskapsteor

https://www.vipeholm.lu.se/om-projektet/medverkande - 2025-07-27

Start

Welcome to Advanced Chip Technologies (ACT) – a Vinnova Competence Centre The ACT-consortium gathers organizations and companies, all passionate about development of advanced chips, to meet current and future needs by industry and society. The consortiumThe consortium has 17 committed partners ranging from start-ups to multinational companies all passionate about the continued development of our j

https://www.advancedchiptechnologies.lu.se/start - 2025-07-27

WP1 – Devices for 3D Integration

In work package 1 we will develop materials, processes and devices to be used in WP2 and WP3. The topics include:Material synthesis with emphasis on III-V nanowire epitaxial growth both using metal organic vapor phase epitaxy and aerotaxy.Scaling of nanowire growth substrates from individual dies to 100 mm Si wafersNanowire surface passivation for photonic devices and gate-stack optimization for t

https://www.advancedchiptechnologies.lu.se/wp1-devices-3d-integration - 2025-07-27

WP2 – Photonic Integration

In work package 2 we will explore the integration of photonic device elements with silicon for applications in communication, sensing and power generation. The topics include:Development of epitaxy, material characterization and single pixel elements for infrared detector arraysDesign and fabrication of CMOS-based read-out circuitry for focal plane arraysUsing Nanowire-based photovoltaics for on-c

https://www.advancedchiptechnologies.lu.se/wp2-photonic-integration - 2025-07-27

WP3 – Circuit implementation: Smart energy and RF

In work package 3 we explore the use of 3D integration technologies to enable innovative merging of control electronics and power devices and make an early evaluation of system benefits and technology limitations. The topics include:Characterization and modelling of DC and RF performance of III-V nanowire transistorsFabrication of amplifiers, switches, or detector circuits operating at D-band freq

https://www.advancedchiptechnologies.lu.se/wp3-circuit-implementation-smart-energy-and-rf - 2025-07-27