Search results

Filter

Filetype

Your search for "*" yielded 529959 hits

Parmelia Ach. s. str. in the southern Baltic region

The distinguishing morphological and chemical characters of nine species of Parmelia Ach. s. str. occurring in the southern Baltic region, namely P. barrenoae Divakar et al., P. ernstiae Feuerer & A. Thell, P. fraudans (Nyl.) Nyl., P. omphalodes (L.) Ach. (including both subspecies P. omphalodes ssp. discordans (Nyl.) Skult and P. omphalodes ssp. omphalodes, P. pinnatifida Kurok., P. saxatilis

Transient HES5 Activity Instructs Mesodermal Cells toward a Cardiac Fate

Notch signaling plays a role in specifying a cardiac fate but the downstream effectors remain unknown. In this study we implicate the Notch downstream effector HES5 in cardiogenesis. We show transient Hes5 expression in early mesoderm of gastrulating embryos and demonstrate, by loss and gain-of-function experiments in mouse embryonic stem cells, that HES5 favors cardiac over primitive erythroid fa

Reprogramming mouse embryonic fibroblasts with transcription factors to induce a hemogenic program

This protocol details the induction of a hemogenic program in mouse embryonic fibroblasts (MEFs) via overexpression of transcription factors (TFs). We first designed a reporter screen using MEFs from human CD34-tTA/TetO-H2BGFP (34/H2BGFP) double transgenic mice. CD34+ cells from these mice label H2B histones with GFP, and cease labeling upon addition of doxycycline (DOX). MEFS were transduced with

Making a Hematopoietic Stem Cell

Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoie

Hematopoietic Reprogramming In Vitro Informs In Vivo Identification of Hemogenic Precursors to Definitive Hematopoietic Stem Cells

Definitive hematopoiesis emerges via an endothelial-to-hematopoietic transition in the embryo and placenta; however, the precursor cells to hemogenic endothelium are not defined phenotypically. We previously demonstrated that the induction of hematopoietic progenitors from fibroblasts progresses through hemogenic precursors that are Prom1+Sca1+CD34+CD45- (PS34CD45-). Guided by these studies, we an

Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm

Tbx3, a member of the T-box family, plays important roles in development, stem cells, nuclear reprogramming, and cancer. Loss of Tbx3 induces differentiation in mouse embryonic stem cells (mESCs). However, we show that mESCs exist in an alternate stable pluripotent state in the absence of Tbx3. In-depth transcriptome analysis of this mESC state reveals Dppa3 as a direct downstream target of Tbx3.

'From blood to blood' : De-differentiation of hematopoietic progenitors to stem cells

Recent studies have reported that fibroblasts or differentiated pluripotent cells can be reprogrammed with transcription factors (TFs) into cells with hematopoietic potential. A study published in Cell now suggests that committed blood precursors may provide a source for blood stem cell transplantation after reprogramming (Riddell et al, 2014). The authors report that a combination of eight TFs re

Reprogramming cell fates : Insights from combinatorial approaches

Epigenetic reprogramming can be achieved in different ways, including nuclear transfer, cell fusion, or the expression of transcription factors (TFs). Combinatorial overexpression provides an opportunity to define the minimal core network of TFs that instructs specific cell fates. This approach has been employed to induce mouse and human pluripotency and differentiated cell types from cells that c

Induction of a hemogenic program in mouse fibroblasts

Definitive hematopoiesis emerges during embryogenesis via an endothelial-to-hematopoietic transition. We attempted to induce this process in mouse fibroblasts by screening a panel of factors for hemogenic activity. We identified a combination of four transcription factors, Gata2, Gfi1b, cFos, and Etv6, that efficiently induces endothelial-like precursor cells, with the subsequent appearance of hem

Regulation of embryonic and induced pluripotency by aurora kinase-p53 signaling

Many signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated p

Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming

The homeodomain transcription factor Nanog plays an important role in embryonic stem cell (ESC) self-renewal and is essential for acquiring ground-state pluripotency during reprogramming. Understanding how Nanog is transcriptionally regulated is important for further dissecting mechanisms of ESC pluripotency and somatic cell reprogramming. Here, we report that Nanog is subjected to a negative auto

Using heterokaryons to understand pluripotency and reprogramming

Reprogramming differentiated cells towards pluripotency can be achieved by different experimental strategies including the forced expression of specific 'inducers' and nuclear transfer. While these offer unparalleled opportunities to generate stem cells and advance disease modelling, the relatively low levels of successful reprogramming achieved (1-2%) makes a direct analysis of the molecular even

Short RNAs Are Transcribed from Repressed Polycomb Target Genes and Interact with Polycomb Repressive Complex-2

Polycomb proteins maintain cell identity by repressing the expression of developmental regulators specific for other cell types. Polycomb repressive complex-2 (PRC2) catalyzes trimethylation of histone H3 lysine-27 (H3K27me3). Although repressed, PRC2 targets are generally associated with the transcriptional initiation marker H3K4me3, but the significance of this remains unclear. Here, we identify

CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression.

CHD7 is one of nine members of the chromodomain helicase DNA-binding domain family of ATP-dependent chromatin remodeling enzymes found in mammalian cells. De novo mutation of CHD7 is a major cause of CHARGE syndrome, a genetic condition characterized by multiple congenital anomalies. To gain insights to the function of CHD7, we used the technique of chromatin immunoprecipitation followed by massiv

Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators

Polycomb Repressor Complexes (PRCs) are important regulators of embryogenesis. In embryonic stem (ES) cells many genes that regulate subsequent stages in development are enriched at their promoters for PRC1, PRC2 and Ser 5-phosphorylated RNA Polymerase II (RNAP), and contain domains of 'bivalent' chromatin (enriched for H3K4me3; histone H3 di-or trimethylated at Lys 4 and H3K27me3; histone H3 trim

ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency

Embryonic stem cells (ESCs) are pluripotent, self-renewing, and have the ability to reprogram differentiated cell types to pluripotency upon cellular fusion. Polycomb-group (PcG) proteins are important for restraining the inappropriate expression of lineage-specifying factors in ESCs. To investigate whether PcG proteins are required for establishing, rather than maintaining, the pluripotent state,

REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells

REST is a transcriptional repressor that targets a group of neuronal genes in non-neuronal cells. In embryonic stem (ES) cells, REST has been implicated in controlling the expression of transcription factor genes that are crucial for lineage determination and for maintaining ES cell potential. Here, we asked whether REST directly regulates neural-specifying genes in mouse ES cells using siRNA-medi

Senescence impairs successful reprogramming to pluripotent stem cells

Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by overexpressing combinations of factors such as Oct4, Sox2, Klf4, and c-Myc. Reprogramming is slow and stochastic, suggesting the existence of barriers limiting its efficiency. Here we identify senescence as one such barrier. Expression of the four reprogramming factors triggers senescence by up-regulating p53, p16INK4a,