Numerically robust square root implementations of statistical linear regression filters and smoothers
In this article, square-root formulations of the statistical linear regression filter and smoother are developed. Crucially, the method uses QR decompositions rather than Cholesky downdates. This makes the method inherently more numerically robust than the downdate based methods, which may fail in the face of rounding errors. This increased robustness is demonstrated in an ill-conditioned problem,