Predicting True Sepsis and Culture-positive Sepsis in Intensive Care Unit with Machine Learning Techniques
Sepsis, a serious medical condition often leading to patients requiring intensive care, has prompted numerous scientists to employ mathematical techniques to aid in its diagnosis. This thesis uses logistic regression and a machine learning technique, XGBoost, to predict true sepsis (as opposed to sepsis mimics) and culture-positive sepsis (among true sepsis) in critical care using blood test resul
