Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler - Leman Refinement Steps
We prove near-optimal trade-offs for quantifier depth versus number of variables in first-order logic by exhibiting pairs of n-element structures that can be distinguished by a k-variable first-order sentence but where every such sentence requires quantifier depth at least n (k= log k). Our trade-offs also apply to first-order counting logic, and by the known connection to the k-dimensional Weisfe